

ANATOMY OF
A WEB APPLICATION:

Security Considerations

White Paper

Steve Pettit, Sanctum Inc.

July, 2001

Sanctum, the Sanctum logo, AppShield, Policy Recognition and Adaptive Reduction are trademarks of Sanctum, Inc.
Products mentioned herein are for identification purposes only and may be registered trademarks of their respective
companies. Specification subject to change without notice.
 2001 Sanctum, Inc. All rights reserved.

Anatomy of a Web Application
Sanctum, Inc. July, 2001
www.SanctumInc.com

2

TABLE OF CONTENTS

OVERVIEW 3

What is a Web application and what goes into building it? 3

SECURITY: ESTABLISHING AND ENFORCING TRUST 6

Establishing and Enforcing Trust with the User 6
Methods to Establish User Trust 6
Establishing Trust with the Web Application 7
Methods to Establish Application Trust 7

WEB APPLICATION COMPONENTS 8

User Interface Code –Written by a third party or in-house (custom code) 8
Web Server Software – Written by a third party 8
Frontend Systems – Written by a third party or in-house (custom code) 9
Backend Systems – Written by a third party or in-house (custom code) 9
Database – Written by a third party or in-house (custom code) 10

WEB APPLICATION THREATS 11

Client Side Tampering 11
Third Party Code and Vendor Tools 12
Application and Language Issues - Invalid Data and Meta Code 13
Denial of Service Attacks (DoS) 14
Web Application Threat Summary 14

DETAIL WEB APPLICATION THREATS:
BY THREAT CATEGORY AND WEB APPLICATION COMPONENT 15

SECURING A WEB APPLICATION 16

SUMMARY 18

Web Application Solutions 19

CONCLUSION 20

Anatomy of a Web Application
Sanctum, Inc. July, 2001
www.SanctumInc.com

3

Overview

Providing a secure Web environment has become a high priority for companies as
eBusinesses have increased the amount and the sensitivity of corporate information that
can be accessed through the Web. This very increase in online traffic and transactions is
also making it more difficult to secure a Web site. This paper will examine the threats to
corporate information and resources that exist on Web sites. Specifically, this paper will
examine the applications that access information over the Web, called Web applications,
and look at the components of these applications and how they are vulnerable to attack.

First, the paper will address the question, what is a Web application? Many people are
unaware of the complexity of these applications, the combinations of code that they
contain, and the resources they access within the company. Then the paper will address
vulnerabilities that exist at each of the layers of an application, and show how hackers
can use those vulnerabilities to access public and nonpublic information other than what
the application designer intended. Finally, the paper will examine solutions to the
problem of Web application Security, looking both at the individual layers of Web
applications, and at these applications as a whole. Not surprisingly, a number of vendors
have released products with the tag line “We secure eBusiness.” As we will see, these
products vary significantly in the vulnerabilities they target and the success with which
they mitigate them.

What is a Web application and what goes into building it?

Web applications are complicated entities. According to the IT reference Web site
Whatis.com (a TechTarget site), an application is “a program designed to perform a
specific function directly for the user or, in some cases, for another application program.
Examples of applications include word processors, database programs, Web browsers,
development tools and communication programs. Applications use the services of the
computer’s operating system and other supporting applications.” In short, an application
is a piece of code that does something, and that may access other pieces of code to do it.

Web applications are the business logic that enables user’s interaction with the web site,
and the transacting and interfacing with all the back-end data systems. Examples include
applications that allow users to look up their account information at their bank and move
funds; applications that allow users to buy things online, such as shopping carts and
transaction software; supply-chain automation applications that link suppliers to a
manufacturer, and many, many others. What these applications have in common is that
they are composed of code that was written explicitly for the Web interface and code
from many other sources that accesses internal data and performs transactions.
Additionally, the databases that are accessed and the data the database contain are all
crucial elements of the Web application. The components of a Web application are shown
schematically in Figure 1. They are described in more detail in Section III.

Anatomy of a Web Application
Sanctum, Inc. July, 2001
www.SanctumInc.com

4

The Web Application

As you can see in Figure 1, Web applications include code that resides on the Web
servers, application servers, databases, and backend systems of an organization. In short,
they are any application that will be accessed in some way, shape, or form through the
Web. The multiple parts of a Web application are often developed, supported and
maintained by different departments within a company. While the term “application”
connotes one discrete entity, in reality the “applications” driving the largest enterprises in
the world are actually stacks of code coming from multiple places, some developed in-
house and some from third party vendors, that all must work properly with each other.
Integrating and managing these applications requires interdepartmental cooperation, and
if the integration between the applications isn’t clean, or if any of the component pieces
of code contains vulnerabilities, the Web application may be vulnerable to failure or to an
attack. Given this complex equation, along with speed-to-market pressures and the
current lack of skilled security professionals, the possibility of human error leading to
vulnerable applications is significant. In fact, at the time of this writing, Gartner Group
estimates that 75 percent of Web site hacks that occur today actually happen at this
application level and this number is expected to increase.

Securing a Web application is difficult, not only because of the cross-departmental
coordination involved, but because most security tools are not designed to address the
Web application as a whole, including how the different pieces of the application interact
with each other. The potential for a security breech exists in each layer of a Web
application. Traditional security solutions, such as access control or intrusion detection
systems, are specialized to protect different layers of the Internet infrastructure. While
these tools are useful for their specific functions, they do not address all of the issues that
Web applications present. And using these tools can give administrators a false sense of
confidence if they do not realize that they are not addressing many of the vulnerabilities
that exist. Additionally, some security solutions can impair the usability of the site by

Anatomy of a Web Application
Sanctum, Inc. July, 2001
www.SanctumInc.com

5

inhibiting the Web application flow. For example, host access controls that are
improperly configured can prevent a user from accessing resources they should have
access to.

One needs to look at the application life-cycle to fully understand the level of risk
inherent in today’s eBusinesses. At the start, Web application developers are generally
not hired or known for their security expertise, and they develop the applications for
functionality (including look and feel) and performance. Therefore, it is not surprising
there are frequently flaws in design, implementation and testing of Web applications with
respect to security. Quality Assurance (QA) follows the development where code is
examined for functionality and efficiency over integrity and security. When the auditors
come into play they generally check for syntax issues, but rarely for content logic. So
applications commonly go into production with some vulnerabilities, often even
published (known) vulnerabilities for which fixes exist. At the same time, hackers make a
living at identifying vulnerabilities that can allow them to break into these applications.
Once a site has been broken into and it is too late to avoid damage the application then
goes back to the developer to patch (more time and money), through QA (more time and
money) and back into production.

A new class of security solution can now address these concerns. One methodology to
address Web application security is with an automated solution, where the security policy
is driven directly by the Web application itself and the security solution understands the
Web application as a whole. Ensuring the integrity of interactions between the user and
the application is at the heart of application security.

Anatomy of a Web Application
Sanctum, Inc. July, 2001
www.SanctumInc.com

6

Security: Establishing And Enforcing Trust

Security is all about trust. This is particularly true in the case of Web application security.
The basic philosophy in security is that trust is established through the ability to enforce
control over a resource. In the case of Web applications the resource is a function of the
data being served. Protect the function and you protect not only the data but also the Web
application. While there are different approaches to securing a Web application there are
really just two philosophies: 1) establishing trust between the Web applications and the
user and 2) establishing trust between the Web applications and data or resources being
served back to the user. This will be defined more thoroughly in the rest of the paper.

Establishing and Enforcing Trust with the User

User trust is based on recognizing identity and granting authority. The Web is an
anonymous medium, making the establishment of identity imperative. Validation of a
user’s identity is required in order to trust their identity. Authentication methods such as
passwords, PKI, digital certificates, and cookie signatures are control techniques used for
identity recognition.

User authority is established by limiting an identified user’s access to information based
on what resources that user can access, and when and how that user may access them.
This is usually accomplished through a combination of role-based access control and
encryption. The goal of these methods is to ensure that the resource trusts the user by
ensuring that an authorized user can access only specific applications and resources.

Methods to Establish User Trust

Authentication – User identification or validation by use of password quality control,
PKI, and/or digital certificates.

Access control – Declares user authority by defining who can access the application or
resource. Access control can be coded into the application or provided externally to the
application.

Intrusion Detection – Aimed at stopping threatening user behavior, based on a
knowledge base of expected attacks. Some Intrusion Detection Systems (IDS) have
adaptive learning capabilities that act after the fact. IDS sits at a layer external to the
application flow and attempts to enforce rules that govern user behavior.

These methods establish trust between the resource and the user up to the point of access
to the Web application. However, these methods do not address security after the user has
been granted access and while they are using the Web application. Web applications are
usually created such that a skillful user can “trick” the application into granting him or
her authority beyond what they are authorized to do.

Anatomy of a Web Application
Sanctum, Inc. July, 2001
www.SanctumInc.com

7

Establishing Trust with the Web Application

Trust between the resources being accessed and the Web application is based on
authorized access, as previously discussed, and limiting what the application can directly
access. The common methods used to accomplish this are access control and file
permissions. The problem with these methods is that the Web application is actually a
process composed of many integrated parts that own all of the data they serve. This
process (the application) requires system resources that can go beyond simple data
access.

The behavior of a Web application is defined during its design. However, a Web
application can often be used in ways that take it beyond its design scope. A hacker can
use the application to access resources that the application was not designed to access,
but which it is not prevented from accessing. An authorized user can break an
application’s trust while using it in an authorized manner. The only way to ensure that
resources can trust a Web application is to ensure the integrity of the application or the
integrity of the inputs to the application.

Methods to Establish Application Trust

Access Control - URL or Web page access based on authenticated users is specifically
known as Web Access Control. The main purpose is to control which pages a user can or
cannot access. One of the drawbacks is that Web Access control has no control over
enforcing Web application logic. If a malicious user finds a way to pervert an application
they may be able to bypass the Access Controls.

Manual Fixing – Addresses problems within the application source code. This solution
requires that programmers have access to the source code (not possible with third party
code), know how to fix a problem, and, of course, even know that the problem exists.
With third party code, manual fixing would include monitoring for published
vulnerabilities and immediately applying all patches, for each program, as the vendor
releases them. The fact that this is still not done, even by large enterprises with large
security groups, and even given that we all know it could prevent many attacks, attests to
the difficulty in keeping up with patches.

Automatic Web Application Firewall – Aimed at application behavior, where the
application interacts with a security solution to define the policy. The policy has
knowledge of the application and how it is designed and functions. The application
defines the security policy, thus if one makes a change to the application, the security
policy is automatically modified. Automatic Web Control and Security will be discussed
in more detail later.

Anatomy of a Web Application
Sanctum, Inc. July, 2001
www.SanctumInc.com

8

Web Application Components

As has been discussed, a Web application is more than the underlying Backend Systems
that resides on an operating system. It is the synergy and interaction of that code with the
code that allows it to provide service, data, or a function to a Web user.

The main components of a Web application were shown in the introduction. They are
described below.

User Interface Code – Written by a third party or in-house (custom code)

The User Interface Code is the presentation layer of the Web application. This code
creates the look and feel of the site. Not only does it present code that interfaces directly
with the server software, it also provides client-side code that can generate semi-
automated features and responses on behalf of the user directly to the server. All user
input is processed through the User Interface Code.

With the exception of third party code, which is patched, Web sites have been reliant on
manual fixing as the only real solution to secure the interface. Developers must make
sure that data input can be properly handled, so Web site security is limited to the skill
level and security motivation of the developer. Most Web developers are not application
security experts and are often not aware of some of the common exploits hackers may
attempt against a site. Developers frequently introduce unnecessary security risks through
features that appear to save time or promote ease of use, such as by using hidden fields to
store important information like prices or leaving a backdoor open. In some cases there
are security issues with libraries and code drivers that the developer has no control over.
Keeping the libraries and support tools up to date is usually the responsibility of the
administrator.

Common code drivers are: HTML, Java, JavaScript, ActiveX, and Visual Basic. The user
interface code may be written by a third party, or in house with Graphical User Interface
(GUI) tools. This code interfaces directly with the User, Web Server software, and the
Frontend System.

Web Server Software – Written by a third party

The Web Server supports the physical communication between the user’s browser and
the applications that the user needs to access. It handles all of the in and out bound http/s
requests, manages user session (timeouts, session state with cookies) and tries to make
sure all sessions are properly processed.

Since virtually all companies use Web Server Software provided by third party vendors,
such as Microsoft IIS, iPlanet, and Apache, they must rely on the vendors to supply error-
free code and provide patch solutions when problems are identified. While a company’s
administrators can make sure the Web server software is configured properly, they are

Anatomy of a Web Application
Sanctum, Inc. July, 2001
www.SanctumInc.com

9

bound to work within the site environment they are supporting. In some cases the optimal
security configuration may conflict with optimal usability. Because administrators are
often evaluated on usability-related criteria such as site throughput and uptime, they are
not always incented to promote the most secure configuration, and often they fail to do
so. Additionally, even if a company is fortunate enough to have a site administrator who
happens to be a security guru – a rare occurrence – they will still be limited by the
availability of vendor patches, as patches are only released after a problem has been
discovered and publicized – often days or weeks afterward it was discovered.

Web Server software interfaces directly with the Frontend systems, operating system, the
Network, and the User Interface Code.

Frontend Systems – Written by a third party or in-house (custom code)

The Frontend System interfaces directly with the User Interface Code, the operating
system, and the Backend Systems. Under normal circumstances a user will not interface
directly with this layer; however, the data that the user passes to the User Interface Code
will be passed through the Frontend System.

The Frontend System can be a combination of third party code and in-house developed
custom code. In order to maintain the security of the Frontend System, operations support
staff must keep current on the specific language bugs, exploits and patches and along
with the libraries and development support tools. Frontend System developers need to
make sure that invalid data and Meta code can be processed correctly. Vendor examples
of Frontend System are ColdFusion and WebLogics. Custom code examples of Frontend
Systems are Common Gateway Interchange (CGI), JSP and ASP.

Typically, CGIs are written with high-level languages such as PHP, Perl, C/C++, Python,
and shell scripting scripts languages. Java Server Pages (JSP) written in Java and
Application Server Pages (ASP) written in ActiveX are becoming more popular.

Backend Systems – Written by a third party or in-house (custom code)

The Backend Systems are the real driving piece of any Web application. The business
needs drive the development of the Backend Systems, and the resulting code provides the
business function, such as facilitating online transactions. User input is passed to this
level via the User Interface Code and any associated Frontend System. The Backend
Systems interface directly with the Frontend System, the Operating System, the Database,
and possibly the data itself.

The Backend application software may be generic off-the-shelf products; a customized
off-the-shelf product (a combination of in-house developed and third party code), in-
house developed code, or complicated systems built using specialized hardware and
commercially tailored software such as SAP environments. Examples of Backend
systems are application servers and e-commerce suites. They may be as complex

Anatomy of a Web Application
Sanctum, Inc. July, 2001
www.SanctumInc.com

10

environments such as Banking and Financial services, or less complicated environments
such as online informational services like search engines and information retrieval.

Backend Systems are similar to Frontend Systems in that they may be a combination of
third party code and custom code, often multiple groups are responsible for its security.
Operations staff and application managers are responsible for keeping vendor
applications current with patches and configurations. Development staff must make sure
that any in-house written code is secure and can properly process Meta data and invalid
code. However, operations staff are again responsible for support of the development
languages, support tools and libraries used by development. And with complex hardware
and software solution customers have to rely on vendor support for not only the integrity
of the software, but also the integrity of the vendor service.

Database – Written by a third party or in-house (custom code)

A database is a collection of data that is organized so that its contents can easily be
accessed, managed, and updated. The Database controls the data that the Web application
uses and manages which data should be served.

Companies almost always use a database that is third party customized code such as
MySQL, Oracle, or DB2. Once again, the database can require support from many areas.
Operations staff should make sure the proper system parameters are set along with proper
file permissions. In addition, any operating system support tools need to be properly
configured and patched. Database administrators need to make sure the database is
properly configured and up to date with the appropriate patches. Database Application
developers need to make sure that the query language can properly handle invalid data
and Meta code.

The Database interfaces directly with the Backend Systems, the data, and the operating
system.

Anatomy of a Web Application
Sanctum, Inc. July, 2001
www.SanctumInc.com

11

Web Application Threats

An attacker can target a Web application at a variety of different points. An attacker need
not have direct access to the support infrastructure since the browser itself serves as an
entry point into the Web application and its dataflow.

When a user makes a request at the Web interface, a flow of data is started. As data flows
through the Web application layers that were described above, each layer must handle the
request properly to avoid becoming a potential breach point. As was noted in the previous
section, there are potential vulnerabilities that can exist at each layer. Figure 2 below
shows these potential breech points. This section will describe some of these different
vulnerabilities in detail and look at attacks a user can successfully accomplish when they
are present.

Client Side Tampering

Web application vulnerabilities can be identified through code scanning, which gathers
information about client side code, such as third party code used, the configuration of
software, and even the languages used to drive the Web application interfaces. Hackers
can gather information through freeware tools that will determine weaknesses in the
code.

Code that runs in the user’s browser is not private. A user can scan the client source code
looking for weaknesses and points of attack. Many sites contain code that the attacker can
alter to attack the site; in effect using the site’s code against itself. This is not limited to
just HTML. JavaScript or any other client side code that runs on the user’s browser is
also vulnerable.

Anatomy of a Web Application
Sanctum, Inc. July, 2001
www.SanctumInc.com

12

In addition to the code run in the browser, any data that is stored on the client can be
examined altered and played back to the server. An example of this kind of attack is
called cookie poisoning. HTML is stateless – it does not have the ability to retain
information from one session to the next. Cookies were added to the HTML standard so
that session information could be stored on the client workstation, in the user’s browser
directory. Cookies enable a server to recognize a user from a previous session. However,
because the cookie information is stored on the user’s desktop, savvy users can alter the
information stored in the cookie. For example, a malicious user could alter the cookie and
impersonate another user.

Something not so obvious is the ability to alter server-side HTML values with client-side
modifications. Hidden values are a feature of HTML that allows Web developers to
change values quickly. Unfortunately, the Web server does not validate the source of the
change, making hidden fields a risky place to store critical information. Through a
technique called hidden manipulation a user can download the HTML source page that
contains a hidden field, change the value and play it back up to the server. The server will
accept the change and process it as a valid request. Some shopping cart programs use
hidden fields to store price information. This technique is behind some recently
publicized hacks where attackers have been able to successfully charge themselves $0 for
expensive items at Web e-tailers.

Forceful browsing is a technique where a user access a Web page they should not be able
to get to by typing the URL directly into the address line instead of going through a link
from the entry page. Many times, the access controls that would stop the user from
accessing the page through the appropriate link do not stop forceful browsing.

Third Party Code and Vendor Tools

In the cases of third party code and vendor tools, the site owner cannot fix things
manually because the site does not own the source code. The site owner’s security is only
as valid as the integrity of the vendor tools provided.

Vendors try to make their tools easy to install and use by providing out-of-the-box
configurations, including default passwords and settings. Sometimes administrators fail
to change these defaults, leaving themselves vulnerable to third party misconfigurations.
Third party misconfigurations are easy for hackers to discover through code scanning and
they pose a high risk for attack if not changed. Leaving default passwords and settings
unchanged can be considered an open invitation for attacks, which can result in theft of
data and potential holes for Denial of Service (DoS) attacks.

Known vulnerabilities, also called vendor bugs, present a similar opportunity for hackers.
With vendor bugs, the risk is the integrity of the tools and how quickly the vendor
responds to any identified problems. The key issue with known vulnerabilities is the
vendor’s response. Any time that elapses between when a bug is identified and when a
patch is issued provides a window for attack, so the speed with which a vendor delivers

Anatomy of a Web Application
Sanctum, Inc. July, 2001
www.SanctumInc.com

13

patches and the speed with which the site administrator applies the patches is key. Some
vendors are very responsive to security issues; others respond more slowly (causing a
problem know as patch latency). Sometimes, a patch may not be issued at all (called zero
patch availability).

Application and Language Issues - Invalid Data and Meta Code

Invalid data may be entered, but is not what is expected by the application. If the
application receives invalid data, it may not be able to process it, leading to unpredictable
results. In some cases the underlying compiler can have a design flaw that creates
problems. For example, in the case of C/C++, when input values are larger than expected,
a reaction called buffer overflow can crash the application (segmentation fault) and
sometimes the operating system. In either case this may result in a number of different
types of dangerous scenarios depending on the configuration of the system, including the
ability for the attacker to access restricted data. Improper memory management (access
violation) is another shortcoming that may allow access to restricted data or the operating
system.

Parameter tampering is manipulating the URL string by changing the parameter to
contain invalid data, for example changing a value to something very large, very small,
negative when expecting positive values, wrong data type (text when expecting integer),
or removing the parameter altogether. Any and all of these can have adverse effects on an
application with unexpected results.

Meta code is control or escape code that is embedded inside of input data to allow control
commands to be passed to the application or even the operating system. In effect, Meta
code allows the user to control the application at a meta-level. Simple examples include
command strings preceded with an exclamation mark “!” passed to Unix shell script, or
percent sign “%” passed to a perl script that would then run the command at the operating
system level. Use of Meta code can allow users to execute attacks through a technique
called stealth commanding, which can allow the attacker to gain access to the operating
system and gain access as a privileged user, crash the site, etc. The User Interface Code
itself has a known similar weakness where use of special characters allows whole
programs to be fed into input fields, a technique called cross site scripting (CSS). By
exploiting this weakness, attackers can sometimes access sensitive corporate information
that was not intended for access through the site. Different languages react differently to
different escape characters and sometimes application sensitive escape characters may be
part a valid URL string. Programmers are often unaware of the vulnerability that input
fields can present. Meta code is not limited to specific characters but includes control
strings that can act as switches that can trigger hidden (undocumented) debug code and
backdoors.

Anatomy of a Web Application
Sanctum, Inc. July, 2001
www.SanctumInc.com

14

Denial of Service Attacks (DoS)

Many people associate the term Denial of Service (DoS) attack with the Distributed
Denial of Service (DDoS) attacks that have been launched against high profile sites over
the past couple years. While DDoS attacks are often highly publicized, there are actually
many types of Denial of Service Attacks that can be more easily launched by individual
hackers. Although Denial of Service are attacks commonly thought of as attacks directed
against a Web server’s operating system, any attack that causes a site to deny service to
its users is a Denial of Service attack; these are not limited to just the operating system.
An attack that disables any component of the Web application will also result in a Denial
of Service, specifically an Application Denial of Service, negatively impacting a site’s
Web presence. In fact, the host operating system may be running, but if the Web
application cannot function, then the Web presence is in effect disabled. For example, if
an attack is focused at the database and shuts it down, then the functionality of the Web
server is removed in that the data can no longer be accessed.

Web Application Threat Summary

Table 1 sums up the exposures just described, illustrates the attack techniques and some
of the consequences of the threat not being addressed.

Table 1 Threat Summary

Threat Category Description Consequence

Code Scanning
Server/Client

Browsing source code Learn vulnerabilities

Cookie Poisoning Changing cookie content User impersonation
Hidden Manipulation Changing hidden HTML fields

value
eShoplifting

Forceful Site Browsing Use URL address line Access sensitive data
Third Party
Misconfigurations

Default or improper software
configuration

Access OS or data

Identified (Known)
Vulnerabilities

Published vendor bugs Access OS, crash
server/application/database,
access sensitive data

Buffer Overflow Overflow field input Access sensitive data, or
crash site/application

Debug Options &
Backdoors

Change code setting Access code/application as
developer or admin

Parameter Tampering
Server/Client

Removal or alteration of
expected parameter fields

Access OS or sensitive
data

Stealth Commanding Use Meta code Access OS or control
application at OS level,
site defacement

Cross Site Scripting Use URL Meta code to insert
Trojan code

Server-side exploitation,
access sensitive data

Application DoS Invalid data input Crash server/application

Anatomy of a Web Application
Sanctum, Inc. July, 2001
www.SanctumInc.com

15

Detail Web Application Threats:
By Threat Category And Web Application Component

With the exception of code scanning, all of these threats result from either the use of
Meta code or invalid data inputs. A single breach at one layer might not pose an
immediate threat; however, it may provide information that can cause exposure at another
layer, which can result in an immediate threat. For example, a breach at the User
Interface layer might not reveal any data, but it might provide information about the
underlying application giving an attacker enough information on how to pose a successful
attack.

Table 2 and Figure 3 depict five attack points in the Web application where an attacker
can attempt an exploit, before the endpoint data is even accessed. At each level there is a
strong potential that an attacker can either directly or indirectly cause a site outage by
taking down the server and/or the application. Worse yet, a skilled attacker can access
data and resources that are outside of the application scope using methods not normally
detected, which means they would neither be stopped nor logged.

Table 2

Five Attack Points

Attack Points

 User

Interface

Web

Server

Frontend

Systems

Backend

Systems

Database

Code scanning Yes
Cookie Poisoning Yes Yes Yes
Hidden
Manipulation

 Yes Yes

Forceful Site
Browsing

 Yes

Third Party
Misconfigurations

 Yes Yes Yes Yes

Known
Vulnerabilities

 Yes Yes Yes Yes

Buffer Overflow Yes Yes Yes Yes
Parameter
Tampering

 Yes Yes Yes Yes

Stealth
Commanding

 Yes Yes Yes Yes

Cross Site
Scripting

Yes

Debug Options &
Backdoors

 Yes Yes Yes Yes

Application DoS Yes Yes Yes Yes

T
h

re
a
t

C
a
te

g
o

ry

Anatomy of a Web Application
Sanctum, Inc. July, 2001
www.SanctumInc.com

16

Securing A Web Application

Figure 3 illustrates the input flow request a user may make from a browser. Notice that
each component of the application includes a potential failure point that could be
exploited with invalid data or Meta code if it is not protected. Fixing vulnerabilities at
each layer would require at least five separate solutions. Addressing security for each
separate component of the Web application is not only tedious, but fixing problems by
making manual programmatic changes has the potential to introduce more issues.
Additionally, because no one single group within a company owns all of the Web
application components, and each component requires a different type of security, a great
deal of coordination is required to secure the application manually. A solution that checks
the data at the Web entry point and verifies that it matches the expected input before
allowing it to be passed to the Web application will invalidate these attacks and provide a
single point of protection, making individual back end protection solutions redundant.

Even though there are many components to a Web application, a successful security
solution needs to treat the application as a whole in order to be effective. Because the
vulnerabilities can all be exploited by input given to the Web application by an attacker, a
solution that checks user input against expected norms before allowing it to be processed
will protect the application against the many different attacks. However, for this solution
to be effective, it has to be able to work automatically and respond automatically to
changes in the application. Any solution that requires administrators to be aware of each
potential breech and to set acceptable parameters individually will run into the same
problems inherent in fixing each vulnerability individually. Trying to second-guess what
an attacker will attempt is not effective, because no administrator can know all of the

Anatomy of a Web Application
Sanctum, Inc. July, 2001
www.SanctumInc.com

17

potential user attacks before they are attempted. Defining explicit access rules is an
important step, but it does not address how the behavior of the application can be
manipulated. An effective Web application security solution will address Web
application behavior at the front end by only allowing valid input as defined by the
application. This ensures Web application integrity so that internal application issues
cannot be exploited.

Anatomy of a Web Application
Sanctum, Inc. July, 2001
www.SanctumInc.com

18

Summary

A Web application is composed of many components, and users have both direct and
indirect access to the internal workings of the Web application. A user’s input flows from
their browser into the User Interface down to the Backend Systems and beyond. In turn
Web content flows to the user all the way from the Backend Systems to the User
Interface where the user interacts with it on their local browser. This interaction exposes
the Web application to malicious attacks. Insuring the trust and integrity of a Web
application requires a security policy based on the inner working and content presentation
of the Web application.

Table 3 summarizes the components of a Web application, potential exploits hackers can
target, and the risks those attacks present.

Table 3 Detail of Web Application – Summary

Name User

Interface

Code

Web Server

Software

Frontend

Systems

Backend

Systems

Database

Examples HTML
Parser

Client side
code
JavaScript
ActiveX
Visual Basic

IIS
Apache
iPlanet

PHP
Perl
C/C++
Python

ColdFusion
WebLogics

Online
Finance
Online
Medical

Customization
Engines

eTail
(eShopping)

Oracle
MySQL

Support Staff Web
Developers

Web/App
Developers

Web Master

Operations -
System Admins

Web Master

Operations -
support

Web/App
Developers

Web Master

Application
Developers

Operations -
Application
Support,
Web Master

DBA

Application
Developers

Exploits that
can be used
by an
attacker

Meta Code,
Invalid data,
HTML bugs

Known
Vulnerabilities,
Meta code,
Configuration

Meta Code,
Invalid Data,
CGI bugs

Configuration

Known
Vulnerabilities,
Invalid Data,
Configuration,
Meta Code

Database Bugs,
Configuration,
Meta Code,
Invalid Data

Directly at
risk

Sensitive Data
Other Sites

Sensitive Data
OS
Network

Sensitive Data
OS
Network

Sensitive Data
OS
Network

Sensitive Data
OS

Application
DoS

 Yes Yes Yes Yes

Anatomy of a Web Application
Sanctum, Inc. July, 2001
www.SanctumInc.com

19

Security for a Web application is usually addressed as an afterthought, not a design issue.
And unfortunately, Web application security is often addressed with the wrong methods.
The application components have different vulnerabilities and must be addressed as a
whole in order to be secure. Each component of the Web application from the browser all
the way to the end data must be secured in order to be effective. While existing security
products provide important functionality, most do not address the security issues inherent
in Web applications. The uses and limitations of several types of security offerings are
shown in table 4.

Web Application Solutions

Table 4

Threat Category Access

Control

Manual

fixing

IDS Automatic Web

Application Firewall

Cookie Poisoning No Yes No Yes
Hidden Manipulation No Yes No Yes
Forceful Browsing Yes No No Yes
Third Party
Misconfigurations

No No No Yes

Known Vulnerabilities Yes Yes Yes Yes
Application Buffer
Overflow

No Yes No Yes

Parameter Tampering No No No Yes
Stealth Commanding No Yes No Yes
Cross Site Scripting No Yes No Yes
Debug Options &
Backdoors

No Yes Yes Yes

Automatic Web Application Firewall solutions address Web application security
properly because they provide the security policy for each application based on
information extracted from that application. This allows the solution to address the
behavior of each specific Web application automatically. The security policy is not
defined by a list of known attack patterns, but how the application functions. By
observing the application, the Automatic Web application firewall solution gains internal
knowledge of the application and what it expects, and then uses this information to
determine whether the input and the application behavior are acceptable, eliminating the
risks associated with application breeches. The solution generates policies that are in sync
with each Web application, automatically defining these policies before the user can even
attempt an attack. The policies are unique to each application, and attacks are stopped
before users are allowed to enter the Web application on the server.

Anatomy of a Web Application
Sanctum, Inc. July, 2001
www.SanctumInc.com

20

Conclusion

Ebusiness has enabled new and exciting uses of the Web, from online customer self-
service applications that save money and promote customer intimacy to business-to-
business transaction software that streamlines relationships with suppliers and partners.
However, every application that links corporate information and resources to the Web
gives hackers a new potential entry-point into your organization. In the race to develop
online services, these Web applications have often been deployed with minimal attention
to security risks, with the result that most corporate sites are surprisingly vulnerable to
hacking or industrial espionage.

As we have seen, the applications that provide online functionality are actually complex
layered entities, and potential vulnerabilities exist at many levels, not just the user
interface or the Web Server. Fixing all of these vulnerabilities manually in each Web
application a company uses is not only an extremely time consuming endeavor, but often
not possible. Most common security tools that companies have in place, such as
firewalls, intrusion detection systems, access controls, and antivirus software, do not
address the issue of application vulnerabilities.

EBusinesses need a security solution specifically designed to protect Web applications
and the issues they present. As shown above, most application vulnerabilities rely on a
hacker’s ability to input invalid data or malicious code into the application, through the
variety of techniques described in Section V. This means that a security solution that sits
between the user and the application(s) and checks the validity of user inputs before
passing them into the application dataflow, can serve to prevent a significant variety of
attacks. To be effective, however, such a solution needs to provide several features:

• Ability to understand individual applications – The solution needs to be able to
analyze each Web application individually. Because each application is unique,
and is built on a unique collection of customer and third party code, the security
solution needs to be able to understand each application, instead of relying on
predefined concepts of hacking attacks.

• Automatic policy generation – The solution needs to use its understanding of the
application to develop appropriate input policies automatically. Any solution that
requires an administrator to generate the policy or rules manually requires that he
or she know every potential vulnerability in every application, and is as time
consuming and failure-prone as attempting to manually fix each problem.

• Automatic updates – For the same reason, the application security solution needs
to be able to recognize and adapt to any changes in the Web applications, whether
they be 3rd party or proprietary applications.

• High accuracy – Because all unacceptable inputs are stopped, the security solution
must be highly accurate, to avoid stopping legitimate uses of the application.

• Scalable – Because Web applications are often built for high user volumes, the
security solutions need to scale to support heavy usage requirements.

• Automated Forensics –The solution needs to automatically generate the forensics
required to analyze the source of the attack and provide the details needed to aid
in catching the hacker.

Anatomy of a Web Application
Sanctum, Inc. July, 2001
www.SanctumInc.com

21

Fortunately, as eBusiness continues to grow, there is a new breed of security solutions
that target Web applications. These solutions vary significantly in levels of automation
and depth of protection, and users need to examine vendor offerings carefully before
purchasing.

